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1 Geometry of projections and the Sobolev inequality
Theorem 1.1. Loomis-Whitney Inequality
If ∥πj(X)∥ ≤ A, then ∥X∥ ≲ A

n
n−1 , where X is a set of unit cubes in the unit cubi-

cal lattice in Rn, ∥X∥ is its volume, and πj(X) is the projection onto the coordinate
hyperplane perpendicular to the xj-axis.

Sketch of proof: We show that if ∥πj(X)∥ ≤ B for every j, then there exists a column
of cubes with between 1 and B

1
n−1 cubes of X, and then we use induction.

Theorem 1.2. Generalization of Loomis-Whitney Inequality
If U is open set in Rn with ∥πj(U)∥ ≤ A, then ∥U∥ ≲ A

n
n−1 .

Sketch of proof: take Uε ⊂ U, which is the biggest union of ε−cubes in ε−lattice.

Corollary 1.3. Isoperimetric inequality
If U is a bounded open set in Rn, then Voln(U) ≲ Voln−1(∂U)

n
n−1 .

Sketch of proof: Using previous theorem we get Voln(U) ≲ (maxj ∣πj(U)∣)
n

n−1 ≤ Voln−1(∂U)
n

n−1 .

2 Sobolev Inequality
Su(h) ∶= {x ∈ Rn so that ∣u(x)∣ > h}.

Lemma 2.1. If u ∈ C1
comp(Rn), then for any j, ∣πj(Su(h))∣ ≤ h−1 ⋅ ∥∇u∥L1 .

Tu(k) ∶= {x ∈ Rn so that 2k < ∣u(x)∣ ≤ 2k+1}.

Lemma 2.2. If u ∈ C1
comp(Rn), then for any j, ∣πjTu(k)∣ ≲ 2−k ∫Tu(k−1)

∣∇u∣.

Theorem 2.3. Sobolev inequality
If u ∈ C1

comp(Rn), then ∣∣u∣∣
L

n
n−1
≲ ∣∣∇u∣∣L1 .
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Sketch of proof: From Loomis-Whitney, theorem 1.1, theorem 1.2 and previous lemma
we get

∣Tu(k)∣ ≲ 2
−k n

n−1 (∫
Tu(k−1)

∣∇u∣)

n
n−1

,

and therefor

∫ ∣u∣
n

n−1 ∼ ∑
k∈Z
∣Tu(k)∣2

k n
n−1 ≲ ∑

k∈Z
(∫

Tu(k−1)
∣∇u∣)

n
n−1

≤ (∫
Rn
∣∇u∣)

n
n−1

.

3 Intersection patterns of balls in Euclidean space
Lemma 3.1. Vitali Covering Lemma
If {Bi}i∈I is a finite collection of balls in Rn, then there exists a subcollection J ⊂ I such
that {Bj}j∈J are disjoint but ⋃i∈I Bi ⊂ ⋃j∈J 3Bj.

Sketch of proof: We choose a subset of disjoint balls such that their radii are big enough.
Then we show that every ball intersects with some from our subset.

Lemma 3.2. Ball doubling
If {Bi}i∈I is a finite collection of balls, then ∣ ⋃2Bi ≤ 6n∣ ⋃Bi∣.

Sketch of proof: We use Vitali Covering Lemma for 2Bi and notice the relations between
the volumes of the sets.

Theorem 3.3. Vitali Covering Lemma for infinite collections of balls
Suppose {Bi}i∈I is a finite collection of balls in Rn, and there exist finite constant M
such that any disjoint subset of the balls {Bi}i∈I has total volume at most M . Then
there exists a subcollection J ⊂ I such that {Bj}j∈J are disjoint but ⋃i∈I Bi ⊂ ⋃j∈J 4Bj.

Sketch of proof: We repeat proof of Vitali Covering Lemma but with taking for our
collections balls with radii that are big enough (3/4 of supremal radius) instead of
maximal ones (which may not exist).

4 Hardy-Littlewood maximal function
Definition 4.1. Average of a function f on a set A

∮A f ∶= 1
VolA ∫A f.

Definition 4.2. Hardy-Littlewood maximal function
Mf(x) ∶= supr ∮B(x,r) ∣f ∣.

Lemma 4.3. For each h > 0, ∣SMf(h)∣ ≲ h−1∥f∥L1 .

Sketch of proof: We observe that we can cover SMf(h) with balls and we use Vitali
Covering Lemma for infinite collections of balls.
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Lemma 4.4. ∣SMf(h)∣ ≲ h−1 ∫Sf (h/2)
∣f ∣.

Sketch of proof: We use balls from previous proof and observe that ∫Bj∩Sf (h/2)
∣f ∣ ≥ h

2 ∣Bj ∣.

Theorem 4.5. Hardy-Littlewood
For any dimension n and any p > 1, there is a constant C(n, p) so that ∥Mf∥Lp(Rn) ≤

C(n, p)∥f∥Lp(Rn).

Sketch of proof: We use previous lemma and then observe the behaviour of geometric
sum.

5 Lp estimates for linear operators
Proposition 5.1. Suppose that T obeys the inequality ∥Tf∥Lq(Rn) ≤ C∥f∥Lp . If the
measure of the support of f is equal to V , and if ∣f ∣ ≤ h everywhere, then ∣STf(H)∣ ≤
CqV q/p(h/H)q.

Definition 5.2. Convolution
f, g ∶ Rn Ð→ R,
(f ∗ g)(x) ∶= ∫Rn f(y)g(x − y)dy = ∫Rn f(x − y)g(y)dy.

Tαf ∶= f ∗ ∣x∣−α = ∫Rn f(y)∣x − y∣−αdy, where 0 < α < n.

Proposition 5.3. Fix a dimension n and consider the linear operator Tα. The following
are equivalent:

1. There exists a constant C so that for every r > 0, ∥TαχBr ∥q
≤ C∥χBr∥p.

2. p > 1 and α = n(1 − 1
q +

1
p).

Theorem 5.4. Hardy-Littlewood-Sobolev
If p > 1 and α = n(1 − 1

q +
1
p), then ∥Tαf∥q ≤ C(n, p, q)∥f∥p.

6 Proof of the Hardy-Littlewood-Sobolev inequality

Lemma 6.1. Tαf(x) = ∫
∞

0 rn−α−1 (∮B(x,r) f)dr

Sketch of proof of the Hardy-Littlewood-Sobolev inequality: We use both definition of
Mf(x) and Holder’s inequality to get upper bounds for ∮B(x,r) f , and then previous
lemma. By choosing right constants depending on α, p, n we then apply Hardy and
Littlewood theorem.
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