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1 Geometry of projections and the Sobolev inequality

Theorem 1.1. Loomis-Whitney Inequality

If |7;(X)| < A, then | X| § A7, where X is a set of unit cubes in the unit cubi-
cal lattice in R", | X is its volume, and 7;(X) is the projection onto the coordinate
hyperplane perpendicular to the x;-axis.

Sketch of proof: We show that if |7;(X)| < B for every j, then there exists a column
of cubes with between 1 and B#7 cubes of X , and then we use induction.

Theorem 1.2. Generalization of Loomis-Whitney Inequality
If U is open set in R” with |7;(U)| < A, then |U| g A==,

Sketch of proof: take U, c U, which is the biggest union of e—cubes in e-lattice.

Corollary 1.3. Isoperimetric inequality
If U is a bounded open set in R”, then Vol,(U) $ Vol,_; (0U)#-1.

Sketch of proof: Using previous theorem we get Vol,,(U) § (max; |;(U)|)#1 < Vol,,_, (U )71,

2 Sobolev Inequality
Su(h) :={x e R" so that |u(z)| > h}.

Lemma 2.1. If ue C!
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T.(k) :={x e R" so that 2% < |u(z)| < 2F+1}.
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Theorem 2.3. Sobolev inequality
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Sketch of proof: From Loomis-Whitney, theorem [I.1}, theorem [I.2] and previous lemma
we get

n

T, (k 52-'%"_1([ )" ,
T (k)] N

and therefor

= et
T I U
VRN AC LR AN [ Ivu

3 Intersection patterns of balls in Euclidean space

Lemma 3.1. Vitali Covering Lemma
If { B; }ics is a finite collection of balls in R”, then there exists a subcollection J c I such
that {B;}e; are disjoint but Uje; B; € Ujes 3B;.

Sketch of proof: We choose a subset of disjoint balls such that their radii are big enough.
Then we show that every ball intersects with some from our subset.

Lemma 3.2. Ball doubling
If {B;}ics is a finite collection of balls, then |U2B; < 6™|U B;|.

Sketch of proof: We use Vitali Covering Lemma for 2B; and notice the relations between
the volumes of the sets.

Theorem 3.3. Vitali Covering Lemma for infinite collections of balls

Suppose { B} is a finite collection of balls in R”, and there exist finite constant M
such that any disjoint subset of the balls {B;};; has total volume at most M. Then
there exists a subcollection J c I such that {B;};c; are disjoint but U;e; B; ¢ Ujes 4B;.

Sketch of proof: We repeat proof of Vitali Covering Lemma but with taking for our
collections balls with radii that are big enough (3/4 of supremal radius) instead of
maximal ones (which may not exist).

4 Hardy-Littlewood maximal function

Definition 4.1. Average of a function f on a set A

fAf:zﬁfAf'

Definition 4.2. Hardy-Littlewood maximal function
M f(x) := sup, 553(“) | f]-

Lemma 4.3. For each h >0, |Syp(h)| S h7Y| f -

Sketch of proof: We observe that we can cover Sys(h) with balls and we use Vitali
Covering Lemma for infinite collections of balls.

2



Lemma 4.4. |Sy(h)| S h? fsf(h/z) |f]-
Sketch of proof: We use balls from previous proof and observe that fBijf(h/Q) |f] > 21B,].

Theorem 4.5. Hardy-Littlewood
For any dimension n and any p > 1, there is a constant C(n,p) so that |M f]regn) <

C(n,p) [ f ] o @ny-

Sketch of proof: We use previous lemma and then observe the behaviour of geometric
sum.

5 LP estimates for linear operators

Proposition 5.1. Suppose that T obeys the inequality |7f]ramrn) < C||f]e. If the
measure of the support of f is equal to V, and if |f| < h everywhere, then |S7;(H)| <
Ccavalr(h/H)A.

Definition 5.2. Convolution
[,9:R" >R,
(f *9) (@) = fu FW)g(x = y)dy = [n f(x—y)g(y)dy.

Tof = f 2| = [z f(y)|z - y|~dy, where 0 < v < n.

Proposition 5.3. Fix a dimension n and consider the linear operator 7. The following
are equivalent:

1. There exists a constant C' so that for every >0, |[Toy, 1, < CllxB,[p-
= _ 1,1
2.p>land a=n(l-_+:).

Theorem 5.4. Hardy-Littlewood-Sobolev
Ifp>1and a=n(l- % + %), then |1, f|, < C(n,p,q)| fllp-

6 Proof of the Hardy-Littlewood-Sobolev inequality

Lemma 6.1. T,f(z) = [;~ rmo! (ﬁB(M) f) dr

Sketch of proof of the Hardy-Littlewood-Sobolev inequality: We use both definition of
M f(z) and Holder’s inequality to get upper bounds for fB(x,r) f, and then previous
lemma. By choosing right constants depending on «, p, n we then apply Hardy and
Littlewood theorem.
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